Basic Algebra

In basic algebra, letters represent numbers. It is important to collect same letters together when possible.

For example: | $3 x+2 x+6 x$ | should be written as $\mathbf{1 1 x}$ (there are 11 x 's altogether) |
| :--- | :--- |
| $5 y-3 y$ | should be written as $\mathbf{2 y}$ |
| 1 x | is usually written as \mathbf{x} (the 1 is assumed) |

If you are given the value (number) for the letter, you can substitute that value for the letters to answer the equation.
For example: \quad Solve $3 x+2$ when $x=4$
Simply substitute 4 for the x and solve.

$$
\begin{aligned}
& 3 x+2 \\
& 3(4)+2 \\
& 12+2 \\
& =\mathbf{1 4}
\end{aligned}
$$

An equation is solved when the unknown letter is isolated on one side of the equal sign. When isolating x, the equation must be kept balanced. To maintain balance, you must always do the same thing to both sides of the equation.

For example: $\quad x+3=10$
3 is being added to x, so do the opposite to both sides and subtract 3 from both sides to isolate x. On the left side, 3-3 is 0 , leaving just the x on the left.

$$
\begin{aligned}
x+3 & =10 \\
-3 & =-3 \\
\mathbf{x} & =\mathbf{7}
\end{aligned}
$$

Practice:
a) Solve

$$
x-6=4
$$

6 is being subtracted from x so add 6 to both sides to isolate x. Again,
$-6+6=0$, leaving just x on the left.

$$
\begin{aligned}
x-6 & =4 \\
x-6+6 & =4+6
\end{aligned}
$$

$\mathrm{x}=10$
b) Solve $\quad 4 x=20$
x is being multiplied by 4 so the opposite of multiply is divide (by 4) on both sides.

$$
\begin{aligned}
4 x & =20 \\
\frac{4 x}{4} & =\frac{20}{4} \\
\mathbf{x} & =5
\end{aligned}
$$

c) Solve $\quad \frac{y}{6}=5$
y is being divided by 6 so the opposite of divide by 6 is multiply by 6 on both sides.

$$
\begin{aligned}
\frac{y}{6} & =5 \\
\frac{y}{6}(6) & =5(6) \\
y & =30
\end{aligned}
$$

d) Solve $4 x+3 x+2=5+4$

Collect like terms first!

$$
7 x+2=9
$$

Now isolate the x by subtracting 2 from both sides

$$
\begin{aligned}
7 \mathrm{x}+2 & =9 \\
7 \mathrm{x}+2 \boxed{-2} & =9 \boxed{-2} \\
7 \mathrm{x} & =7
\end{aligned}
$$

Divide by the number of x 's to isolate the x on the left

$$
\begin{aligned}
\frac{7 x}{7} & =\frac{7}{7} \\
\mathbf{x} & =\mathbf{1}
\end{aligned}
$$

Algebra Practice

Solve the following:

1. $3 x+9 x-8 x=$
2. $7 y-3 y+2 y=$
3. $Z-3=25$
4. $3 x+4=13$ (isolate $3 x$ first)
5. $5 x+6=31$ (isolate 5 x first)
6. $2 x+4$, when $x=3$
7. $M-2 s=40$, when $M=4 s$
8. $\mathrm{N} \div 5=60$
9. 4 x
10. $6 y$
11. $\mathrm{Z}=28$
12. $\mathrm{X}=3$
13. $X=5$
14. 10
15. $s=20$
16. $\mathrm{N}=300$
